The Full-Wave Rectifier

Consider the following junction diode circuit:

Note that we are using a transformer in this circuit. The job of this transformer is to step-down the large voltage on our power line (120 V rms) to some smaller magnitude (typically $20-70 \mathrm{Vrms}$).

Note the secondary winding has a center tap that is grounded. Thus, the secondary voltage is distributed symmetrically on either side of this center tap.

For example, if $v_{S}=10 \mathrm{~V}$, the anode of D_{1} will be 10 V above ground potential, while the anode of D_{2} will be 10 V below ground potential (i.e., -10V):

Conversely, if $v_{s}=-10 \mathrm{~V}$, the anode of D_{1} will be 10 V below ground potential (i.e., -10 V), while the anode of D_{2} will be 10 V above ground potential:

The more important question is, what is the value of output v_{0} ? More specifically, how is v_{o} related to the value of source v_{5}-what is the transfer fuction $v_{0}=f\left(v_{s}\right)$?

To help simplify our analysis, we are going redraw this cirucuit in another way. First, we will split the secondary winding into two explicit pieces:

We will now ignore the primary winding of the transformer and redraw the remaining circuit as:

Note that the secondary voltages at either end of this circuit are the same, but have opposite polarity. As a result, if $v_{s}=10$, then the anode of diode D_{1} will be 10 V above ground, and the anode at diode D_{2} will be 10 V below ground-just like before!

Now, let's attempt to determine the transfer function $v_{0}=f\left(v_{s}\right)$ of this circuit.

First, we will replace the junction diodes with CVD models.
Then let's ASSUME D_{1} is forward biased and D_{2} is reverse biased, thus ENFORCE $v_{01}^{i}=0$ and $i_{02}^{i}=0$. Thus ANALYZE:

Note that we need to determine 3 things: the ideal diode current $i_{D 1}^{i}$, the ideal diode voltage $v_{D 2}^{i}$, and the output voltage vo. However, instead of finding numerical values for these 3 quantities, we must express them in terms of source voltage v_{s} !

From KCL:

$$
i=i_{01}^{i}+i_{02}^{i}=i_{01}^{i}+0=i_{01}^{i}
$$

From KVL:

$$
v_{s}-v_{D 1}^{i}-0.7-R i_{o}^{i}=0
$$

Thus the ideal diode current is:

$$
i_{01}^{i}=\frac{v_{s}-0.7}{R}
$$

Likewise, from KVL: $\quad v_{s}-v_{D 1}^{i}-0.7+0.7+v_{D 2}^{i}+v_{s}=0$
Thus, the ideal diode voltage is:

$$
v_{D 2}^{\prime}=-2 v_{S}
$$

And finally, from KVL:

$$
v_{s}-v_{01}^{i}-0.7=v_{0}
$$

Thus, the output voltage is:

$$
v_{0}=v_{s}-0.7
$$

Now, we must determine when both $i_{01}^{i}>0$ and $v_{02}^{i}<0$. When both these conditions are true, the output voltage will be $v_{0}=v_{s}-0.7$. When one or both conditions $i_{01}^{i}>0$ and $v_{02}^{i}<0$ are false, then our assuptions are invalid, and $v_{0} \neq v_{s}-0.7$.

Using the results we just determined, we know that $i_{01}^{i}>0$ when:

$$
\frac{v_{s}-0.7}{R}>0
$$

Solving for v_{s} :

$$
\begin{aligned}
\frac{v_{s}-0.7}{R} & >0 \\
v_{s}-0.7 & >0 \\
\quad v_{s} & >0.7 \mathrm{~V}
\end{aligned}
$$

Likewise, we find that $v_{D 2}^{i}<0$ when:

$$
-2 v_{s}<0
$$

Solving for v_{s} :

$$
\begin{aligned}
-2 v_{s} & <0 \\
2 v_{s} & >0 \\
v_{s} & >0
\end{aligned}
$$

Thus, our assumptions are correct when $v_{s}>0.0$ AND $v_{s}>0.7$. This is the same thing as saying our assumptions are valid when $v_{s}>0.7$!

Thus, we have found that the following statement is true about this circuit:

$$
v_{0}=v_{s}-0.7 \mathrm{~V} \text { when } v_{s}>0.7 \mathrm{~V}
$$

Note that this statement does not constitute a function (what about $v_{s}<0.7$?), so we must continue with our analysis!

Say we now ASSUME that D_{1} is reverse biased and D_{2} is forward biased, so we ENFORCE $i_{01}^{i}=0$ and $v_{D 2}^{i}=0$. Thus, we ANALYZE this circuit:

Using the same proceedure as before, we find that $v_{0}=-v_{s}-0.7$, and both our assumptions are true when $v_{s}<-0.7 \mathrm{~V}$. In other words:

$$
v_{0}=-v_{s}-0.7 \mathrm{~V} \text { when } v_{s}<-0.7 \mathrm{~V}
$$

Note we are still not done! We still do not have a complete transfer function (what happens when $-0.7 \mathrm{~V}<v_{s}<0.7 \mathrm{~V}$?).

Finally then, we ASSUME that both ideal diodes are reverse biased, so we ENFORCE $i_{01}^{i}=0$ and $i_{D 2}^{i}=0$. Thus ANALYZE:

Following the same proceedures as before, we find that $v_{s}=0$, and both assumptions are true when $-0.7<v_{s}<0.7$.
In other words:

$$
v_{s}=0 \text { when }-0.7<v_{s}<0.7
$$

Now we have a function! The transfer function of this circuit is:

$$
v_{0}=\left\{\begin{array}{l}
v_{s}-0.7 \mathrm{~V} \text { for } v_{s}>0.7 \mathrm{~V} \\
0 \mathrm{~V} \text { for }-0.7>v_{s}>0.7 \mathrm{~V} \\
-v_{s}-0.7 \mathrm{~V} \text { for } v_{s}<-0.7 \mathrm{~V}
\end{array}\right.
$$

Plotting this function:

The output of this full-wave rectifier with a sine wave input is therefore:

Note how this compares to the transfer function of the ideal full-wave rectifier:

Likewise, compare the output of this junction diode full-wave rectifier to the output of an ideal full-wave rectifier:

Again we see that the junction diode full-wave rectifier output is very close to ideal. In fact, if $A \gg 0.7 \mathrm{~V}$, the $D C$ component of this junction diode full wave rectifier is approximately:

$$
V_{0} \approx \frac{2 A}{\pi}-0.7 \mathrm{~V}
$$

Just 700 mV less than the ideal full-wave rectifier DC component!

